E-3821

M. A./M. Sc. (Previous) EXAMINATION, 2021 MATHEMATICS
 Paper First
 (Advanced Abstract Algebra)
 Time : Three Hours]
 [Maximum Marks : 100

Note : Attempt any two parts from each question. All questions carry equal marks.

Unit-I

1. (a) If G is a commutative group having a composition series, then G is a finite group. Prove it.
(b) Prove that any two composition series of a finite group are equivalent.
(c) If E is a finite separable extension of a field F , then prove that E is a simple extension of F .

Unit-II

2. (a) Define group of F -automorphisms of E . If E is a finite extension of a field F , then prove that :

$$
|\mathrm{G}(\mathrm{E} \mid \mathrm{F})| \leq[\mathrm{E}: \mathrm{F}] .
$$

P. T. O.
(b) Find the Galois group of $x^{4}+1 \in \mathrm{Q}[x]$.
(c) Show that the polynomial $x^{7}-10 x^{5}+15 x+5$ is not solvable by radicals over Q .

Unit-III

3. (a) State and prove the fundamental theorem on homomorphism of modules.
(b) Prove that every homomorphic image of a Noetherian module is Noetherian.
(c) State and prove Wedderburn-Artin theorem.

Unit-IV

4. (a) For any non-zero $\mathrm{T} \in \mathrm{A}(\mathrm{V})$ there exists a unique monic polynomial $m(x) \in \mathrm{F}(x)$ such that:
(i) $m(\mathrm{~T})=0$
(ii) For any $g(x) \in \mathrm{F}(x), g(\mathrm{~T})=0$, if and only if $m(x) \mid g(x)$
(iii) $\mathrm{F}(\mathrm{T})=\frac{\mathrm{F}(x)}{(m(x))}$. Prove.
(b) Prove that, two nilpotent linear transformations S , $\mathrm{T} \in \mathrm{A}(\mathrm{V})$ are similar if and only if they have the same invariants.
(c) Find the Jordan canonical form of the matrix :

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
0 & 4 & 2 \\
-3 & 8 & 3 \\
4 & -8 & -2
\end{array}\right] . \\
\text { Unit- } \mathbf{V}
\end{gathered}
$$

5. (a) Find the invariant factors of the matrix :

$$
\left[\begin{array}{ccc}
-x & 4 & -2 \\
-3 & 8-x & 3 \\
4 & -8 & -2-x
\end{array}\right]
$$

(b) Reduce the following matrix A to a rational canonical form :

$$
\mathrm{A}=\left[\begin{array}{ccc}
-3 & 2 & 0 \\
1 & 0 & 1 \\
1 & -3 & -2
\end{array}\right]
$$

(c) Find invariant factors, elementary divisors and the Jordan canonical form of the following matrix :

$$
\left[\begin{array}{ccc}
0 & 4 & 2 \\
-3 & 8 & 3 \\
4 & -8 & -2
\end{array}\right]
$$

